

Journal of Fluorine Chemistry 128 (2007) 423-437

www.elsevier.com/locate/fluor

Review

Hexafluoro-, heptafluoro-, and octafluoro-salts, and $[M_nF_{5n+1}]^-$ (n = 2, 3, 4) polyfluorometallates of singly charged metal cations, Li^+-Cs^+ , Cu^+ , Ag^+ , In^+ and Tl^+

Zoran Mazej ^{a,*}, Rika Hagiwara ^b

^a Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia ^b Department of Fundamental Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Received 21 August 2006; received in revised form 4 October 2006; accepted 7 October 2006 Available online 11 October 2006

Abstract

The AMF₆, A_2MF_7 , A_3MF_8 , AM_2F_{11} , AM_3F_{16} and AM_4F_{21} compounds (A = Li, Na, K, Rb, Cs, Cu, Ag, In, Tl; M = P, As, V, Rh, Ru, Au, Pt, Ir, Os, Re, Sb, Mo, W, Nb, Ta, Bi) are reviewed.

Some of the structural data of the AMF_6 compounds are based just on powder diffraction work from the middle of the last century. The crystal structure types of AMF_6 compounds have been re-classified in this review, based mainly on single crystal data. The crystal structure types of AMF_6 compounds can be classified into six main groups: $LiSbF_6$ type, $NaSbF_6$ type, structures of cubic APF_6 and $AAsF_6$ with orientational disorder of the anions, tetragonal $KSbF_6$ (T) types and similar structures, $AgSbF_6$ type and similar structures, and $KOsF_6$ type.

Reported crystal structures of A_2MF_7 , A_3MF_8 , AM_2F_{11} , AM_3F_{16} and AM_4F_{21} compounds are limited. K_2MF_7 (M=Nb, Ta) crystallizes in the monoclinic and K_2WF_7 in the orthorhombic crystal system. Among the A_3MF_8 compounds the complete crystal structure has been determined only for Na_3TaF_8 , which is monoclinic. The only known examples of crystal structures of AM_2F_{11} compounds are ASb_2F_{11} (A=Ag,K,Cs). Crystals of KSb_2F_{11} are orthorhombic and isostructural to $AgSb_2F_{11}$, while $CsSb_2F_{11}$ is monoclinic. $CsSb_3F_{16}$ is the only example of a structurally characterized AM_3F_{16} compound. Its crystals are orthorhombic. For the rest of the known A_2MF_7 , A_3MF_8 , AM_2F_{11} , AM_3F_{16} and AM_4F_{21} compounds, only lattice parameters are known.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Hexafluorometallates; Heptafluorometallates; Octafluorometallates; Polyfluorometallates; Crystal structures

Contents

1.	Introduction	424
2.	AMF ₆ compounds	424
	2.1. LiSbF ₆ structural type (Fig. 1)	424
	2.2. NaSbF ₆ structural type (Fig. 2)	426
	2.3. Structures of cubic APF ₆ and AAsF ₆ with orientational disorder of the anions (Figs. 3 and 4)	426
	2.4. Tetragonal KSbF ₆ (T) structural types and similar structures (Fig. 5)	429
	2.5. AgSbF ₆ structural type and similar structures (Fig. 6)	429
	2.6. KOsF ₆ structural type (Fig. 7)	430
3.	A ₂ MF ₇ compounds	432
4.	A ₃ MF ₈ compounds	433
5.	AM ₂ F ₁₁ compounds	434
6.	AM ₃ F ₁₆ and AM ₄ F ₂₁ compounds	435
7.	Conclusions	436
	Acknowledgement	436
	References	436

E-mail address: zoran.mazej@ijs.si (Z. Mazej).

^{*} Corresponding author.

1. Introduction

Monofluorides (AF) and pentafluorides (MF₅) form a variety of compounds with general formulas AMF₆, A₂MF₇, A_3MF_8 , AM_2F_{11} , AM_3F_{16} and AM_4F_{21} . The largest group comprises the AMF₆ compounds, more than 100 of which have been reported (Table 1). The last complete review of their crystal structures dates from the 1960s [1,2] with subsequent brief discussion in Refs. [3,4]. Since then many crystal structures of AMF₆ compounds have been published. Because of this, and because of some discrepancies in the published data, we have carried out a comprehensive review of the crystal structures of AMF₆ compounds and proposed a modified classification. Additionally, literature data relating to other phases in AF-MF₅ systems (A_2MF_7 , A_3MF_8 , AM_2F_{11} , AM₃F₁₆ and AM₄F₂₁) have been included. In these systems only the chemistry of tantalum and niobium was recently reviewed [5].

2. AMF₆ compounds

The structures of AMF₆ compounds can be divided into NaCl and CsCl types. The NaCl type has (6,6)-coordination which is found for the salt whose radius ratio, r(cation)/ r(anion), is small. The CsCl type has (8,8)-coordination and occurs in salts with a large radius ratio. Since the MF₆ anion is not perfectly spherical, its orientation is also affected by the size of the cation and probably by its hardness. Due to differences in the orientation of the anions, a variety of structures are found in both NaCl and CsCl type salts. Depending on the orientation of the anions, the coordination number of fluorine atoms around the cation varies from six, for LiSbF₆ (NaCl type) and NaSbF₆ (NaCl type) structures, to 12 for the KOsF₆ structure (CsCl type). Some of the hexafluorophosphates and arsenates exhibit orientational disorders. The coordination numbers vary from 6 to 12 in the local structure of these compounds. Among them, compounds like CsPF₆ (NaCl type) exhibit a fixed 12 coordination number, in spite of the presence of disorder. Some of the salts are polymorphic and phase transitions have been reported (see Legend under Table 1). Some of the structures are based only on powder diffraction work from the middle of the 20th century. In this review, we have reclassified the published structures, based mainly on single crystal data.

2.1. $LiSbF_6$ structural type (Fig. 1)

All the LiMF₆ and Cu^IMF₆ compounds (although only two examples are so far known for the latter [16,17]) crystallize in this structure. In the series of NaMF₆, irregularity is observed in the radius ratio rule. LiSbF₆ structure is found mainly for NaMF₆ whose ionic radius of M is small (<0.72 Å). However, NaPF₆, which is the salt with the smallest [MF₆]⁻ anion in Table 2, crystallizes not in the LiSbF₆ but in the NaSbF₆ structure, as a stable form under ambient conditions [8]. On the other hand, NaBiF₆, with the largest [MF₆]⁻ anion,

Structural types of A^IM^VF₆ compounds

	Ь	As	>	Rh	Ru	Au	F	Ir	Os	Re	Sb	Мо	W	Nb	Ta	Bi
	(0.52^{a})	(0.52^{a}) (0.60^{a})	(0.68^{a})	(0.69^{a})	$(0.69^{\rm a})$ $(0.705^{\rm a})$	(0.71^{a})	(0.71^{a})	(0.71^{a})	(0.715^{a})	(0.72^{a})	(0.74^{a})	(0.75^{a})	(0.76^{a})	(0.78^{a})	(0.78^{a})	07) ·
Li (0.90)	а	а	а	а	а	а	а	а	а	а	а	а	а	a	a	423- es
	I	а	ı	ı	I	I	ı	I	I	ı	а	ı	ı	I	I	I
	b [7,8]	а	g	в	а	а	ı	а	а	þ	p	þ	þ	þ	þ	а
	ပ	၁	р	I	d, e	а	ı	d, e	d, e	ı	e	ı	ı	h	h	p
K (0.152)	g [8], f	g [9], f	J	J	f	J.	f	J.	J	d, f	e [10], d, f	p	p	р	p	e [11], d
	50	J	I	I	I	I	I	I	I	I	I	I	ı	I	I	ı
	0.0	£	J	ı	f	ı	ı	ı	ı	ı	f	J	ı	f [12]	f [12]	ı
	50	f [13], g	f	f	f	f	f	f	f	f	f [13]	f	f	f [14]	f [14]	f
Cs (0.181)	g [8,15]	f [13], g	Ŧ	J	J	Ŧ	J.	Ŧ	J	J	f [13]	Ţ	J	f [14]	f [14]	J
ı																

a. LiSbF₆ type; b. NaSbF₆ type; c. AgPF₆ type; d. KNbF₆ / KSbF₆(1) types; e. AgSbF₆ type; f. KOSF₆ type; g. CsPF₆ type; h. AgTaF₆ type. Information about some high-temperature phases not included in Table 1 and structural transitions in dependence of temperature could be found in Refs. [7-15] Shanon ionic radii (Å) [6].

Table 2 LiSbF₆ type (rhombohedral, $R\overline{3}$, no. 148, Z = 1, C.N. (A^I, M^V) = 6)

	Lattice constant	S			$V(\mathring{A}^3)^a$	Structural data ^b	References
	Hexagonal setti	ng	Rhombohed	ral setting			
	a (Å)	c (Å)	a (Å)	α (°)			
LiPF ₆	4.932(2) 4.932(2) 4.933(1)	12.658(4) 12.641(5) 12.657(2)	5.09 5.086 5.090	57.954 58.012 57.966	88.9 88.8 88.9	Structure; single crystal Unit cell; powder data ^c Unit cell; powder data ^d	[18] [19] [19]
LiAsF ₆	5.016(1)	13.028(4)	5.220	57.435	94.6	Structure; powder data	[18]
LiVF ₆	5.00	13.33	5.30	56.3	96.3	Unit cell; powder data	[1,2]
LiRhF ₆	5.02018(7)	13.5588(3)	5.369	55.745	98.6	Single crystal/SPDD ^e	[20–22]
LiRuF ₆	5.07397(8)	13.5244(3)	5.376	56.314	100.5	Structure; SPDD data ^e	[20,21]
LiAuF ₆	5.00337(5) 4.994(1)	13.7160(2) 13.624(2)	5.410 5.379	55.091 55.315	99.1 98.1	Structure; SPDD data Unit cell; powder data	[20,21] [23]
LiPtF ₆	5.02686(4)	13.6559(2)	5.398	55.497	99.6	Structure; SPDD data ^e	[20,21]
LiIrF ₆	5.06148(4)	13.6260(2)	5.401	55.855	100.8	Single crystal and SPDDe	[20–22]
LiOsF ₆	5.10558(6) 5.1111(8) 5.0512(3)	13.6106(2) 13.625(4) 13.5932(9)	5.410 5.416 5.388	56.307 56.308 55.901	102.4 102.7 100.12	Structure; SPDD data ^e Structure; single crystal ^f Structure; single crystal ^g	[21] [21] [20,21]
LiReF ₆ ^h	5.057	13.735	5.43	55.5	101.4	Unit cell; powder data	[1,2,20]
LiSbF ₆	5.18(2)	13.60(2)	5.43	56.97	105.3	Structure; single crystal	[18,24]
LiMoF ₆	5.190	13.585	5.43	57.1	105.6	Unit cell; powder data	[1,20]
LiWF ₆	5.234	13.606	5.45	57.4	107.6	Unit cell; powder data	[1,2,20]
LiNbF ₆	5.31810(3)	13.5861(2)	5.471	58.155	110.9	Structure; SPDD data ^e	[20,21]
LiTaF ₆	5.32006(8)	13.6178(3)	5.481	58.070	111.26	Structure; SPDD data ^e	[20,21]
LiBiF ₆	5.181	13.99	5.540	55.76	108.4	Structure; powder data	[18,26]
CuAsF ₆	5.13	13.87	5.49(1)	55.7(1)	105.3	Unit cell; powder data	[16]
CuSbF ₆	5.304(4)	14.53(1)	5.730	55.138	118.0	Structure; single crystal	[17]
NaAsF ₆	5.336	13.979	5.586	57.06	114.9	Unit cell; powder data	[1]
NaVF ₆	5.330	14.144	5.629	56.55	116.0	Unit cell; powder data	[1,2]
NaRhF ₆	5.24	14.62	5.74	54.36	115.9	Unit cell; powder data	[25]
NaRuF ₆	5.31	14.77	5.80	54.49	120.2	Unit cell; powder data	[25]
NaAuF ₆	5.237(2)	15.042(4)	5.855	53.13	119.1	Unit cell; powder data	[23]
NaIrF ₆	5.37	14.70	5.80	55.2	122.5	Unit cell; powder data	[1,2]
NaOsF ₆	5.37	14.70	5.80	55.2	122.5	Unit cell; powder data	[1,2]
NaBiF ₆	5.468	15.16	5.958	54.64	130.4	Structure; powder data	[18,26]
AgAuF ₆	5.2840(2)	15.0451(6)	5.870	53.498	121.3	Unit cell; SPDD data ^e	[20,27]

^a Volume is given for the rhombohedral unit cell.

crystallizes in the LiSbF₆ rather than the NaSbF₆ structure (Table 2). In the AgMF₆ series, only AgAuF₆ is known to crystallize in the LiSbF₆ structure. The structure is the result of (6,6)-coordination of NaCl-type for the combination of small atomic cations and large hexafluoroanions, as in the

case of NaSbF₆-type. It is regarded as an NaSbF₆ structure, slightly twisted so as to elongate the diagonal of the pseudo NaCl-type lattice for the effective packing of ions. $[MF_6]^-$ anions tilt towards the edge of the rhombohedron (17° in the case of LiSbF₆). The cation is coordinated by six fluorine

^b Data were collected by powder or single crystal X-ray diffraction methods.

^c LiPF₆ prepared by reaction between elemental F₂ and an equimolar mixture of LiF and P.

d LiPF₆ prepared by reacting LiF with PF₅ in anhydrous HF.

^e SPDD = synchrotron X-ray powder diffraction data at 299 K.

f Data collected at 293 K.

^g Data collected at 129 K.

^h The authenticity of this compound is doubtful (see Ref. [20]).

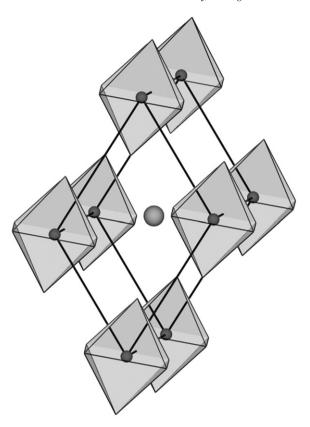


Fig. 1. The rhombohedral unit cell and structure of LiSbF₆ structural type.

atoms from the six different $[MF_6]^-$ anions. The A-F-M chain is not straight, but bent (148°) in the case of LiSbF₆ (Fig. 1).

2.2. NaSbF₆ structural type (Fig. 2)

The NaSbF₆ structure, which has the highest symmetry of the AMF₆ structures, is not widespread and is found only for the sodium hexafluorometallates of transition metals with limited ionic radii of 0.72-0.78 Å. They contain an NaCl type arrangement of the cations and anions. The A-F-M chain is straight, without the tilt of MF₆ units. NaPF₆ is the only exception in this series, crystallizing in NaSbF₆ structure in

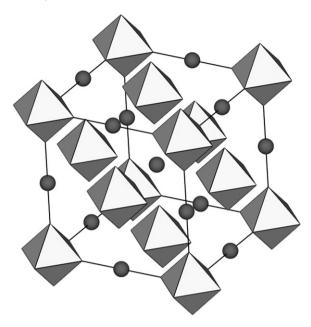


Fig. 2. The cubic unit cell and structure of NaSbF₆ structural type.

spite of the small size of the phosphorus atom. The structure of this compound was originally classified as "NaPF₆ type" with the same space group, but with inclined anions with an eightfold orientational disorder. The recent result, however, based on single crystal X-ray diffraction analysis, supports the NaSbF₆ type [8]. The coordination number of the fluorine atoms around the cation is 6 (Fig. 2) (Table 3).

2.3. Structures of cubic APF₆ and AAsF₆ with orientational disorder of the anions (Figs. 3 and 4)

Some of the structures of AMF₆ (M = P, As) in Table 4 were originally reported as "KPF₆ type" and later retermed CsPF₆ structure with $Pa\overline{3}$ space symmetry. This structure could be described by starting from NaSbF₆ type $(Fm\overline{3}m)$, then rotating the octahedral $[PF_6]^-$ anion by 60° around the three-fold axis of the lattice (the diagonal direction of the unit cell). The choice of three-fold axis out of four for the rotation is uniquely

Table 3 NaSbF₆ type (cubic, $Fm\overline{3}m$, no. 225, Z = 4, C.N. (A^I) = 6) (previously NaPF₆ type)

	Lattice constants, a (Å)	$V(\mathring{A}^3)$	Structural data ^a	References
NaPF ₆	7.6140(5)	441.41(4)	Structure; single crystal	[1,8]
NaReF ₆	8.18	547.3	Unit cell; powder data	[1,2]
NaSbF ₆	8.184(5)	547.3	Structure; powder data	[2,18,28]
NaMoF ₆	8.194	550.2	Unit cell; powder data	[1,2]
NaWF ₆	8.18	547.3	Unit cell; powder data	[1,2]
NaNbF ₆	8.26 8.28	563.6 567.7	Unit cell; powder data Unit cell; powder data	[1,2] [29]
NaTaF ₆	8.28	567.7	Unit cell; powder data	[1,2]

^a Data were collected by powder or single crystal X-ray diffraction methods.

Table 4 Cubic AMF₆ (M = P, As), $Fm\overline{3}m$, no. 225, Z = 4, C.N. (A^I) = 10 (for AgPF₆ type), 12 (for CsPF₆ type); previously classified as $Pa\overline{3}$ CsPF₆ type

	Lattice constants, a (Å)	$V(\mathring{A}^3)$	Structure type	Structural data ^a	References
AgPF ₆	7.5508(7)	430.51(12)	AgPF ₆	Structure; single crystal	[8,30,31]
AgAsF ₆	7.7548(21)	466.34(37)	AgPF ₆	Structure; single crystal	[30,31]
KPF ₆	7.7891(7)	472.57(6)	CsPF ₆	Structure; single crystal ^b	[8]
KAsF ₆	8.0560	522.83		Unit cell; powder data	[9]
InPF ₆	8.07(2)	524.9		Unit cell; powder data	[32]
TlPF ₆	7.94	500.6		Structure; powder data	[1]
RbPF ₆	7.887(8)	490.6(8)	CsPF ₆	Unit cell; single crystal	[8]
RbAsF ₆	8.246(4)	560.7		Unit cell; powder data	[13]
CsPF ₆	8.197(2)	550.9(2)	CsPF ₆	Structure; single crystal ^c	[8]
CsAsF ₆	8.384(5)	589.3		Unit cell; powder data	[13]

^a Data were collected by powder or single crystal X-ray diffraction methods.

determined for each $[PF_6]^-$ to maintain the cubic symmetry. By the rotation, two fluorine atoms from each PF_6^- coordinate equally to one cation, increasing the coordination number to a total of 12. As a result, the space symmetry descends to $Pa\overline{3}$ and the lattice becomes primitive. However, the single crystal structure recently determined for some salts has revealed that the lattices of these compounds are actually not primitive but preserve face-centered cubic symmetry. This is caused by the random choice of the rotation axis of each $[PF_6]^-$ out of the four three-fold axes [8]. As a result, the 24 sites for fluorine atoms around a phosphorus atom, corresponding to a special position

(96k), are equally occupied, with an occupancy ratio of 0.25. Coordination of the A^+ cation by fluorine atoms is unchanged by the rotation. The coordination number of A^+ cation is still 12 (Figs. 3 and 4).

Another type of AMF₆ that possesses $Fm\overline{3}m$ symmetry is found for AgPF₆ and AgAsF₆ [30]. In this case, the disorder results from the choice of the three four-fold rotational axes with a rotation of 45° from the original position in the NaSbF₆ structure. The 24 sites for fluorine atoms around a phosphorus atom, corresponding to two special positions (24e and 48h), are equally occupied with an occupancy ratio of 0.33. The averaged

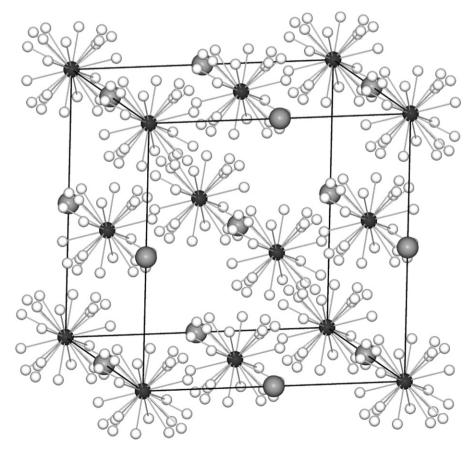


Fig. 3. The cubic unit cell and structure of CsPF₆ structural type with disordered PF₆ units.

^b For high-pressure behaviour of the cubic phase of KPF₆ see Ref. [33].

^c For other possible high-temperature modifications see Ref. [8].

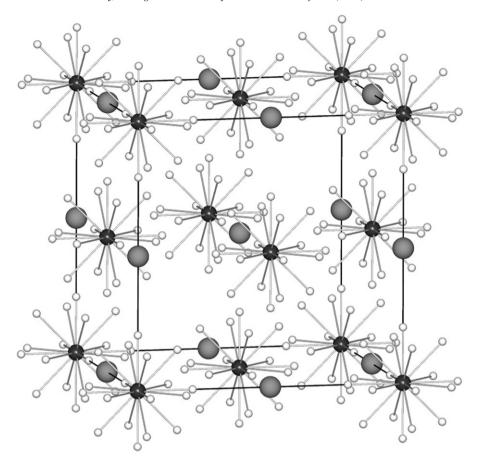


Fig. 4. The cubic unit cell and structure of AgPF₆ type with disordered PF₆ units.

Table 5 Tetragonal AMF₆, Z = 2, C.N. $(A^{I}) = 8-12$

	Lattice constants	S	$V(\mathring{A}^3)$	Space group	Structural data ^a	References
	a (Å)	c (Å)				
AgVF ₆	4.90	9.42	226.2	$P\overline{4}c2$	Unit cell; powder data	[1,2]
AgRuF ₆	4.85	9.54	224.4	$P\overline{4}c2$	Unit cell; powder data	[1,2]
AgIrF ₆	4.85	9.70	228.2	$P\overline{4}c2$	Unit cell; powder data	[1,2]
AgOsF ₆	4.92	9.58	231.8	$P\overline{4}c2$	Unit cell; powder data	[1,2]
$AgBiF_6$	5.079(2)	9.552(3)	246.4	$P\overline{4}2m$	Unit cell; powder data	[20]
AgNbF ₆	4.9780(10)	9.6040(10)	237.99(12)	$P4_2/mcm$	Unit cell; single crystal	[30]
AgTaF ₆	4.9949(4)	9.6051(8)	239.64(6)	$P4_2/mcm$	Structure; single crystal	[30]
KReF ₆	5.044	10.09	256.8	$P\overline{4}c2$	Unit cell; powder data	[1,2]
$KSbF_6$	5.16(1)	10.07(2)	267.86	$P\overline{4}2m$	Structure; single crystal	[10,11,18,34]
$KMoF_6$	5.085	9.97	257.8	$P\overline{4}c2$	Unit cell; powder data	[2]
KWF ₆	5.105	10.09	263	$P\overline{4}c2$	Unit cell; powder data	[2]
KNbF ₆	5.18(2) 5.18	10.05(2) 10.08	269.8 270.5	$P\overline{4}c2$	Structure; single crystal Unit cell; powder data	[11,35] [44]
KTaF ₆	5.20(2)	10.05(2)	271.8	$P\overline{4}c2$	Structure; single crystal	[1,2,35]
$KBiF_6$	5.248	10.07	277.34	$P\overline{4}c2$	Structure; powder data	[11,18]

^a Data were collected by powder or single crystal X-ray diffraction methods.

coordination number of fluorine atoms around the cation is 10, the sum of those at 24e (2) and those at 48h (8).

The structures of the cubic APF₆ and AAsF₆ compounds in Table 4 have not been determined in detail unless otherwise noted. It has also not been clarified whether some of the $[PF_6]^-$ and/or $[AsF_6]^-$ salts crystallize in the structure formerly determined for $CsPF_6$ ($Pa\overline{3}$), in which no disorder occurs in the orientation of $[PF_6]^-$ or $[AsF_6]^-$. A single crystal X-ray or neutron powder diffraction study is necessary for further clarification of the detailed structure of these compounds (Table 4).

2.4. Tetragonal KSb F_6 (T) structural types and similar structures (Fig. 5)

There is some confusion as to the structure of this group of compounds, some sources reporting one structural type [3], and others two different types [4]. There is a group of AMF₆ compounds classified as KNbF₆ structure [2]. In these compounds, MF₆ octahedra are significantly compressed $(O_h \text{ to } D_{3d})$, the cis F-M-F angle being about 45°. However, if the fluorine atoms located at 4e in $P\overline{4}c2$ (no. 116) are repositioned to 4f, the [MF₆]⁻ anions recover their octahedral shape. The reported space groups of KSbF₆ (T) [34], AgTaF₆ [31], and KNbF₆ [35] are $P\overline{4}2m$, $P4_2/mcm$, and $P\overline{4}c2$, respectively. However, their structures are the same, except for differences in the manner of the slight deformation of the MF₆ octahedron (in the case of KNbF₆, fluorine atoms should be repositioned). Further examination is necessary to check the structural differences between these compounds. In particular, the unusual deformation of MF₆ in the KNbF₆ structure should be carefully re-examined. Cations and anions form a CsCl-type arrangement with (8,8)-coordination. Doubling of the CsCl cell along the c-axis is due to different orientations of the MF₆ octahedra that are slightly compressed along this axis (O_h to D_{2h}). The cation is coordinated by four F(1) from four different MF_6 and eight F(2) from the other four MF₆, forming a dodecahedral coordination. The coordination number varies according to the definition. In the case of AgTaF₆ for example, the distance Ta-F(2) (2.46(2) Å) is shorter than Ta-F(1) (2.91(3) Å). Thus the coordination number based on the closest approach of the F atoms is 8 (Table 5) (Fig. 5).

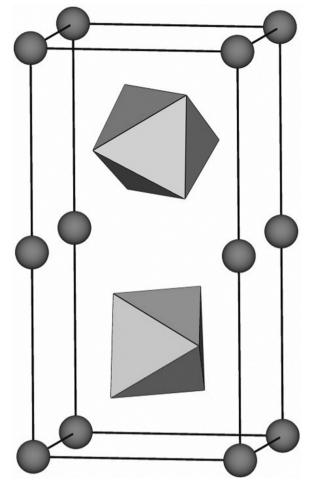


Fig. 5. The tetragonal unit cell and structure of $KSbF_6$ (T) structural type. The origin is set at the K position.

2.5. $AgSbF_6$ structural type and similar structures (Fig. 6)

The array of cations and anions here is CsCl type with no compression. The $[SbF_6]^-$ anion is thus a regular octahedron, which contrasts with that in the tetragonal AMF₆. Four orientations of the SbF_6 octahedron occur, the unit cell being a cube with a doubled lattice constant containing eight $[SbF_6]^-$ anions forming (8,8)-coordination. However, six fluorine atoms, from six different SbF_6 out of eight, coordinate to a silver atom. In Table 6, only the structure of $AgSbF_6$ has been determined by

Table 6 AgSbF₆ type (cubic, $Ia\overline{3}$, no. 206, Z = 8, C.N. $(A^{I}) = 6$)

	Lattice constants, a (Å)	$V(\mathring{A}^3)$	Space group	Structural data ^a	References
AgRuF ₆	9.653(10)	899.5(14)	Ia $\overline{3}$	Unit cell; powder data	[20]
AgIrF ₆	9.704(2)	913.80(28)	Ia $\overline{3}$	Unit cell; powder data	[20]
AgOsF ₆	9.7318(9)	921.68(13)	Ia $\overline{3}$	Unit cell; powder data	[20]
AgSbF ₆	9.857(5)	957.7(7)	$Ia\overline{3}$	Unit cell; powder data	[20]
AgSbF ₆	9.7985(4)	940.76(12)	$Ia\overline{3}$	Structure; single crystal	[31]
KSbF ₆	10.176(8)	1053.7(12)	123 or 12 ₁ 3 ^b	Unit cell; powder data ^c	[10,18]
$KBiF_6$	10.34	1105.51	$Ia\overline{3}$	Structure; powder data	[11,18]

^a Data were collected by powder or single crystal X-ray diffraction methods.

^b The initially proposed space group symmetry $Ia\overline{3}$ was later ruled out [10] and new space groups I23 or $I2_13$ proposed.

^c Data collected at 268 K.

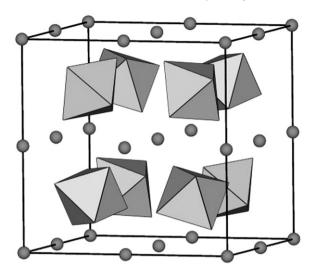


Fig. 6. The cubic unit cell and structure of $AgSbF_6$ structural type. The origin is set at the Ag position.

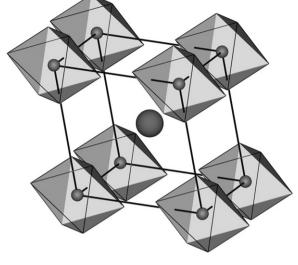


Fig. 7. The rhombohedral unit cell and structure of $KOsF_6$ structural type.

single crystal X-ray diffraction [31]. The same space group, $Ia\overline{3}$, was originally proposed also for KSbF₆ as a low-temperature form (the high-temperature form is tetragonal), however, different space groups such as I23 or $I2_13$ were later proposed. The structure of the potassium salts should be re-examined to confirm the structural difference from the silver salts (Table 6) (Fig. 6).

2.6. $KOsF_6$ structural type (Fig. 7)

This structure is found for some KMF₆ compounds and for the majority of AMF₆ compounds whose A⁺ cations have radii larger than 1.5 Å. The structure is derived from the CsCl type arrangement of cations and anions with rhombohedral distortion. Compression of the CsCl cubic cell along the cell diagonal yields a rhombohedral cell with a distortion angle (α) that ranges from 95° to 98°. Two fluorine atoms from each [MF₆]⁻ anion at the corner of the unit cell are arranged to coordinate equally to the central cation. The cation is equally coordinated by a total of 12 fluorine atoms. The cations and fluorine atoms together form a cubic close packing arrangement, in which the former are coordinated by six of the latter in the same layer, three of them above the layer and three below (Fig. 7) (Table 7).

Table 7 KOsF₆ type (rhombohedral, $R\overline{3}$, no. 148, Z = 1, C.N. (A¹) = 12)

	Lattice consta	nts			$V(\mathring{A}^3)^a$	Structural data ^b	References
	Hexagonal set	ting	Rhombohedra	l setting			
	a (Å)	c (Å)	a (Å)	α (°)			
KPF ₆	7.09	7.79	4.85	94	113.2	Unit cell; powder data	[1]
KAsF ₆	7.39(1)	7.32(1)	4.92	97.49	115.4	Structure; single crystal	[36,9,18]
KVF ₆	7.38	7.38	4.92	97.2	116.0	Unit cell; powder data	[1,2]
KRhF ₆	7.46 7.4060(2)	7.36 7.2714(2)	4.96 4.915	97.62 97.772	118.2 115.13	Unit cell; powder data Structure; single crystal ^c	[25] [21]
KRuF ₆	7.46 7.465	7.41 7.414	4.97 4.968(1)	97.4 97.40(1)	119.0 119.3	Unit cell; powder data Unit cell; powder data	[2,25] [37]
KAuF ₆	7.348(8) 7.49 7.496(3)	7.198(8) 7.27 7.315(3)	4.874 4.936(5) 4.967	97.84 97.96(3) 97.966	112.2 116.4 118.7	Unit cell; powder data Unit cell; powder data Structure; single crystal ^d	[23] [38] [39]
KPtF ₆	7.45	7.40	4.96	97.4	118.7	Unit cell; powder data	[2,38,37,40]
KIrF ₆	7.474	7.524	4.9744(7)	97.399(9)	119.7	Unit cell; powder data	[37]
KOsF ₆	7.486	7.487	4.991(1)	97.18(2)	121.1	Structure; powder data	[1,2,41]
KReF ₆	7.530	7.537	5.012(4)	97.15(4)	123.4	Unit cell; powder data	[37]
InAsF ₆	7.58(2)	7.90(1)	5.108	95.813	131.1	Unit cell; powder data	[32]
TlAsF ₆	7.55	7.59	5.04	97.0	124.9	Unit cell; powder data	[1]

Table 7 (Continued)

	Lattice consta	ants			$V (\mathring{A}^3)^a$	Structural data ^b	References
	Hexagonal se	tting	Rhombohedr	al setting			
	a (Å)	c (Å)	a (Å)	α (°)			
TlVF ₆	7.53	7.99	5.10	95.2	130.9	Unit cell; powder data	[1,2]
TlRuF ₆	7.60	7.74	5.09	96.6	129.0	Unit cell; powder data	[1,2]
TlSbF ₆	7.67	7.95	5.16	96.0	135.0	Structure; powder data	[1]
$TlMoF_6$	7.631	7.885	5.135	96.13	132.5	Unit cell; powder data	[1,2]
TlNbF ₆	7.662 7.766	7.853 7.960	5.142 5.21	96.37 96.37	133.1 138.6	Unit cell; powder data Unit cell; powder data	[1,2,12] [14]
TlTaF ₆	7.672	7.881	5.148	96.34	133.9	Unit cell; powder data	[1,2]
RbAsF ₆	7.497(1)	7.589(1)	5.013	96.783	123.1	Structure; single crystal	[13]
RbVF ₆	7.51	7.55	5.01	97.0	122.7	Unit cell; powder data	[1,2]
$RbRhF_6$	7.61	7.62	5.06	97.14	127.4	Unit cell; powder data	[25]
RbRuF ₆	7.59	7.66	5.07	96.88	127.4	Unit cell; powder data	[2,25]
RbAuF ₆	7.638(4)	7.608(4)	5.087	97.309	128.1	Unit cell; powder data	[23]
RbPtF ₆	7.61	7.65	5.08	97.0	127.9	Unit cell; powder data	[2]
RbIrF ₆	7.639	7.682	5.105	97.0	129.4	Unit cell; powder data	[1,2]
RbOsF ₆	7.64	7.75	5.106	96.74	130.5	Unit cell; powder data	[1,2]
RbReF ₆	7.64	7.75	5.11	96.7	130.5	Unit cell; powder data	[1,2]
RbSbF ₆	7.670(1)	7.861(2)	5.145	96.373	133.5	Structure; single crystal	[1,13]
RbMoF ₆	7.63	7.79	5.11	96.13	130.6	Unit cell; powder data	[1,2]
RbWF ₆	7.72	7.69	5.14	97.6	132.2	Unit cell; powder data	[1,2]
RbNbF ₆	7.66	7.85	5.14	96.4	133.1	Unit cell; powder data	[14,12]
RbTaF ₆	7.663	7.848	5.14	96.4	133.1	Unit cell; powder data	[1]
RbBiF ₆	7.712	7.889	5.171	96.44	135.4	Structure; powder data	[26,18]
CsAsF ₆	7.723(1)	8.050(1)	5.204	95.806	138.6	Structure; single crystal	[13]
CsVF ₆	7.80	8.04	5.24	96.2	141.2	Unit cell; powder data	[1]
CsRhF ₆	7.81	8.02	5.24	96.31	141.2	Unit cell; powder data	[25]
CsRuF ₆	7.80	8.07	5.25	96.3	141.7	Unit cell; powder data	[2,25]
CsAuF ₆	7.640(5) 7.81	8.133(6) 8.00	5.204 5.24(1)	95.34 96.43(5)	137.0 140.9	Unit cell; powder data Unit cell; powder data	[23] [38]
CsPtF ₆	7.86	8.05	5.27	96.4	143.4	Unit cell; powder data	[2]
CsIrF ₆	7.85	8.08	5.27	96.2	143.6	Unit cell; powder data	[1,2]
CsOsF ₆	7.85	8.12	5.28	96.1	144.5	Unit cell; powder data	[1,2]
CsReF ₆	7.853(1)	8.140(1)	5.284	95.996	144.9	Structure; single crystal ^e	[14,42]
CsSbF ₆	7.904(1)	8.261(1)	5.330	95.717	149.0	Structure; single crystal	[42,43,18]
CsMoF ₆	7.86	8.15	5.29	96.0	145.4	Unit cell; powder data	[1,2]
CsWF ₆	7.85	8.30	5.31	95.5	147.7	Unit cell; powder data	[1,2]
CsNbF ₆	7.97	8.07	5.32	95.8	147.9	Unit cell; powder data	[2,14]
CsTaF ₆	7.96	8.17	5.32	95.8	149.3	Unit cell; powder data	[2]
CsBiF ₆	7.930	8.274	5.345	95.76	150.1	Structure; powder data	[26,18]

Volume is given for rhombohedral unit cell.
 Data were collected by powder or single crystal X-ray diffraction methods.
 Data collected at 158 K.
 Data collected at 200 K.

^e Data collected at 293 K.

3. A₂MF₇ compounds

Known A₂MF₇ compounds are given in Table 8. The most investigated are K₂NbF₇ and K₂TaF₇, because of their use as starting materials for the production of metals. The available data about K₂TaF₇ preparation, main properties and structure have been reviewed recently [51]. K₂TaF₇ crystallizes in the monoclinic space group $P2_1/c$ (no. 14) with Z = 4 (Table 9) [49].

The crystal structure of K_2TaF_7 consists of potassium cations and $[TaF_7]^{2-}$ anions (Fig. 8). Below 150 K, the $[TaF_7]^{2-}$ anion is built as a trigonal prism with six fluorine atoms at the vertices.

Table 8 Known A₂MF₇ compounds

	Nb	Ta	W	Sb	Bi
Li	[44]	_	_	_	_
Na	[44,45]	[46,47]	-	_	[54]
K	$[44,45,48-50]^{a}$	[46,47,49-52] ^a	[53] ^a	[54]	[54]
Rb	[14,45]	[47,55]	[53]	-	[54]
Cs	[14]	[47,55]	-	[54]	[54]
Tl	[12,14]	[47]	_	_	-

^a Crystal structure known.

Table 9 Crystal data of A₂MF₇ compounds

	Crystal system	Structural data ^a		References
Na ₂ NbF ₇	Monoclinic	$a = 5.38 \text{ Å}, b = 11.84 \text{ Å}, c = 8.03 \text{ Å}, \beta = 90^{\circ}$	Unit cell; powder data	[44]
K_2NbF_7	Monoclinic	$a = 5.846(3) \text{ Å}, b = 12.693(6) \text{ Å}, c = 8.515(4) \text{ Å}, \beta = 90.0(1)^{\circ}$	Structure; single crystal	[48]
Rb ₂ NbF ₇	Monoclinic	$a = 10.60 \text{ Å}, b = 10.10 \text{ Å}, c = 9.65 \text{ Å}, \beta = 99.5^{\circ}$	Unit cell; powder data	[14]
Cs ₂ NbF ₇	Monoclinic	$a = 11.50 \text{ Å}, b = 10.97 \text{ Å}, c = 9.08 \text{ Å}, \beta = 95^{\circ}$	Unit cell; powder data	[14]
Tl_2NbF_7	Rhombohedral	$a = 10.97 \text{ Å}, \ \alpha = 9.25^{\circ}$	Unit cell; powder data	[12,14]
Na ₂ TaF ₇	Isomorphous to K ₂ ?	ГаF ₇	Powder data	[46,47]
K ₂ TaF ₇	Monoclinic	$a = 5.8559(6) \text{ Å}, b = 12.708(1) \text{ Å}, c = 8.5125(9) \text{ Å}, \beta = 90.17^{\circ}$	Structure; single crystal	[49,51]
K_2WF_7	Orthorhombic	a = 9.800(2) Å, b = 5.736(11) Å, c = 11.723(2) Å	Structure; single crystal	[53]

^a Data were collected by powder or single crystal X-ray diffraction methods.

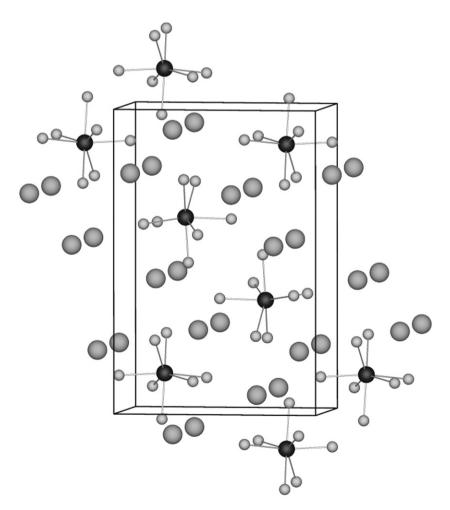


Fig. 8. The monoclinic unit cell and structure of K_2MF_7 structural type (M = Nb, Ta).

Fig. 9. The orthorhombic unit cell and structure of K₂WF₇ (dashed lines represent bonds between tungsten and two pairs of disordered fluorine atoms).

The seventh fluorine atom is placed above the centre of the rectangular face of the prism (i.e., mono-capped trigonal prism with $c_{2\nu}$ symmetry) [51]. With increasing temperature, the $[TaF_7]^{2-}$ anions deform [51].

Crystal structures of K2NbF7 and K2WF7 have also been determined by single crystal X-ray diffraction. The former is isostructural with K2TaF7, while K2WF7 crystallizes in an orthorhombic crystal system (Table 9), space group Pnma (no. 62) with Z = 4 [53]. In the K_2WF_7 structure, the tungsten atom is surrounded by an array of seven fluoride ligands in a distorted trigonal prism, in which one of the rectangular faces is capped by the seventh fluorine atom [53]. Two of the fluorine atoms are unequally disordered between two sets of positions (Fig. 9). Potassium cations are 11-coordinated with fluorine atoms, in contrast to the K₂NbF₇ and K₂TaF₇

Crystal data of A2MFo compounds

Table 11

Table 10 Known A₃MF₈ compounds

	Nb	Ta	Mo	W
Li	[44]	_	_	_
Na	[44]	[46,47,57] ^a	_	[53]
K	[44,45]	[47]	[58]	[53,58,59]
Rb	[14]	-	_	[53]
Cs	[14]	-	_	_
Tl	[12,14]	_	_	_

Crystal structure known.

structures, both of which contain 9-coordinate potassium cations.

For the rest of the known A_2NbF_7 (A = Li [44], Na [44], Rb [14], Cs [14], and Tl [12,14]) compounds only lattice parameters have been reported. Na₂NbF₇ is reported to be isostructural with K₂NbF₇ [44].

In the case of the other A_2TaF_7 (A = Na, Rb, Cs, Tl) salts, the sodium compound is reported to be isomorphous to K₂TaF₇ [46].

Mixed alkali cation niobium and tantalum heptafluoro complexes (NaANbF₇, A = K, Rb; NaATaF₇, A = K, Rb, Cs) have also been reported [56].

Rb₂WF₇ was characterized by Raman spectroscopy [53], and $[SbF_7]^{2-}$ and $[BiF_7]^{2-}$ salts by vibrational spectroscopy and ab initio electronic structure calculations [54]. They possess pentagonal bipyramidal structures of D_{5h} symmetry (Table 10).

4. A₃MF₈ compounds

Known A₃MF₈ compounds are listed in Table 11. A complete crystal structure has been determined only for Na_3TaF_8 [57]. It crystallizes in a monoclinic space group C2/c(no. 15) with Z = 4 (Table 12). The structure consists of Na⁺ cations and $[TaF_8]^{3-}$ anions (Fig. 10). The $[TaF_8]^{3-}$ anion assumes a configuration close to that of the square Archimedean antiprism of symmetry D_{4d} [57].

For the other compounds only lattice parameters, determined from powder data, are available (Table 11). Na₃NbF₈ is reported to be isostructural with Na₃TaF₈ [14]. Rb₃NbF₈ and Cs₃NbF₈ appear to be isostructural, but different from Tl₃NbF₈ [14]. K₃WF₈ is reported to be rhombohedral. No structural data are available for other A_3WF_8 (A = Na, Rb) compounds. Together with K₃WF₈, they were characterized by their Raman spectra in the molten FLINAK eutectic melt [53].

Crystal data of 13,111 & compounds					
	Crystal system	Structural data ^a		References	
Na ₃ NbF ₈	Isostructural with Na	a ₃ TaF ₈	Powder data	[44]	
Rb ₃ NbF ₈	Monoclinic	$a = 10.65 \text{ Å}, b = 9.40 \text{ Å}, c = 8.58 \text{ Å}, \beta = 91.2^{\circ}$	Unit cell; powder data	[14]	
Cs ₃ NbF ₈	Monoclinic	$a = 11.20 \text{ Å}, b = 9.85 \text{ Å}, c = 8.93 \text{ Å}, \beta = 91.5^{\circ}$	Unit cell; powder data	[14]	
Tl_3NbF_8	Hexagonal	a = 8.59 Å, c = 6.69 Å	Unit cell; powder data	[14]	
Na ₃ TaF ₈	Monoclinic	$a = 11.52 \text{ Å}, b = 5.38 \text{ Å}, c = 11.21 \text{ Å}, \beta = 120.55^{\circ}$	Structure; single crystal	[57]	
K_3MoF_8	Cubic	a = 14.1 Å	Unit cell; powder data	[58]	
K_3WF_8	Rhombohedral	$a = 9.75 \text{ Å}, \ \alpha = 86.4^{\circ}$	Unit cell; powder data	[59]	

Data were collected by powder or single crystal X-ray diffraction methods

Table 12 Known AM_2F_{11} compounds

	V	Nb	Та	Sb	Bi
Ag	-	_	_	[62] ^a	_
K	[60]	[44]	-	[63] ^a	-
Rb	_	[14]	_	[63]	_
Cs	[60]	[14,64,65]	[64,65]	[63] ^a	[61]
Tl	_	[12,14]	_	[63]	_

^a Crystal structure known.

5. AM₂F₁₁ compounds

The known AM_2F_{11} compounds are listed in Table 13. AV_2F_{11} (A = K, Cs) [60], $CsTa_2F_{11}$ [64,65] and $CsBi_2F_{11}$ [60] have been characterized only by vibrational spectroscopy.

For ANb_2F_{11} (A = Rb, Cs, Tl) compounds, only lattice parameters have been reported (Table 13) [14].

The AF-SbF₅ system is the most extensively studied, and crystal structures of ASb_2F_{11} (A = Ag, K, Cs) have been determined [62,63].

Crystals of KSb_2F_{11} are orthorhombic (space group Pbca and Z=24) and isostructural with $AgSb_2F_{11}$ (Table 14). The complex structure of ASb_2F_{11} (A=Ag, K) reveals three crystallographically non-equivalent $[Sb_2F_{11}]^-$ anions, highly distorted from the ideal D_{4h} or D_{4d} symmetries, which differ only in the angular orientation of the SbF_5 units relative to each other [65]. There are also three crystallographically non-equivalent A^+ (A=Ag, K) cations in the crystal structure of the corresponding $[Sb_2F_{11}]^-$ salts. The coordination of K/Ag atoms in ASb_2F_{11} (A=Ag, K) can be written as 8 for two A^+ cations and 9 for the third one.

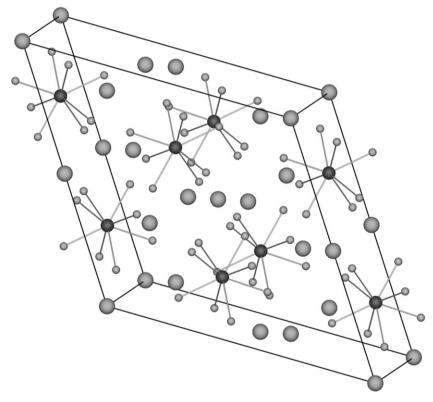


Fig. 10. The monoclinic unit cell and structure of Na₃TaF₈.

Table 13 Crystal data of AM₂F₁₁ compounds

	Crystal system	Structural data ^a		References
RbNb ₂ F ₁₁ ^b	Rhombohedral	$a = 12.76 \text{ Å}, \ \alpha = 91.2^{\circ}$	Unit cell; powder data	[14]
$CsNb_2F_{11}$	Rhombohedral	$a = 12.47 \text{ Å}, \ \alpha = 91.30^{\circ}$	Unit cell; powder data	[14]
$TlNb_2F_{11}^{\ b}$	Rhombohedral	$a = 10.70 \text{ Å}, \ \alpha = 94.5^{\circ}$	Unit cell; powder data	[14]
$AgSb_2F_{11}$	Orthorhombic	a = 10.91.80(7) Å, b = 12.4628(8) Å, c = 38.802(3) Å	Structure; single crystal ^c	[62]
KSb_2F_{11}	Orthorhombic	a = 11.4165(8) Å, b = 12.7996(9) Å, c = 39.485(3) Å	Structure; single crystal ^c	[63]
$CsSb_2F_{11} \\$	Monoclinic	$a = 7.7410(14) \text{ Å}, b = 14.2541(17) \text{ Å}, c = 9.5130(15) \text{ Å}, \beta = 113.226(6)^{\circ}$	Structure; single crystal ^c	[63]

^a Data were collected by powder or single crystal X-ray diffraction methods.

^b At high-temperature there is a phase transition to cubic phase.

^c Data collected at 250 K.

Table 14 Known AM_3F_{16} and AM_4F_{21} compounds

	3 10 4 21 1		
	AM_3F_{16}	AM_3F_{16}	
	Nb	Sb	Nb
K	[44]	_	_
Rb	[14]	_	_
Cs	_	[63] ^a	[14]
Tl	[12,14]	-	_

^a Crystal structure known.

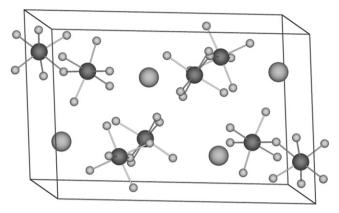


Fig. 11. Packing diagram of CsSb₂F₁₁.

 $CsSb_2F_{11}$ crystallizes in a monoclinic form with the unit cell parameters given in Table 14, space group $P2_1/n$ (no. 14) and Z=4. The packing diagram is depicted in Fig. 11.

The structure of $CsSb_2F_{11}$ is ionic, consisting of discrete $[Sb_2F_{11}]^-$ anions and Cs^+ cations. As in the case of KSb_2F_{11} ,

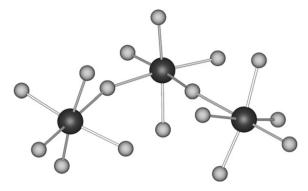


Fig. 12. The $[Sb_3F_{16}]^-$ anion adopts a cis fluorine-bridged geometry in the crystal structure of $CsSb_3F_{16}$.

the $[Sb_2F_{11}]^-$ anion in $CsSb_2F_{11}$ is highly distorted from ideal D_{4h}/D_{4d} symmetry and is similar/identical to the lowest energy structure in the gas phase [66]. The caesium atom is surrounded by 12 fluorine atoms.

The X-ray powder diffraction photographs indicate that $RbSb_2F_{11}$ and $TlSb_2F_{11}$ are isostructural and are distinguished from the crystal structures of KSb_2F_{11} and $CsSb_2F_{11}$, respectively [63].

6. AM₃F₁₆ and AM₄F₂₁ compounds

Little structural data is available for AM_3F_{16} and AM_4F_{21} compounds (Table 14).

[Nb₃F₁₆]⁻-salts were partially characterized by their powder X-ray diffraction patterns [14,44]. The structure of CsSb₃F₁₆ was however determined by single crystal analysis [63]. It

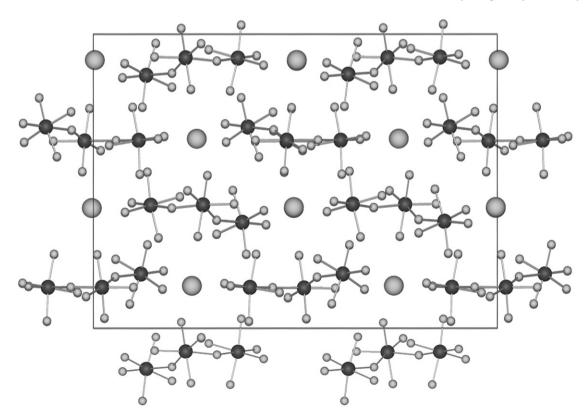


Fig. 13. Packing diagram for CsSb₃F₁₆.

crystallizes in an orthorhombic unit cell at 200 K, with a = 22.07(3) Å, b = 7.726(11) Å, c = 16.05(3) Å, and Z = 8, space group $Pca2_1$ (no. 29). The crystal structure of $CsSb_3F_{16}$ reveals two crystallographically non-equivalent $[Sb_3F_{16}]^-$ anions that adopt a cis fluorine-bridged geometry (Fig. 12). The packing diagram is shown in Fig. 13.

There are also two crystallographically non-equivalent Cs⁺ cations in the crystal structure of CsSb₃F₁₆. These cations are each surrounded by 12 fluorine atoms.

The only reported example of an AM_4F_{21} compound in the AF–MF₅ system is $CsNb_4F_{21}$ [14]. The indexing of its powder X-ray diffraction pattern gave a rhombohedral unit cell (a = 9.52 Å, $\alpha = 88.8^{\circ}$). The geometry of the $[M_4F_{21}]^-$ anion has only been determined for M = Sb in $Xe_2Sb_4F_{21}$ [67].

7. Conclusions

The A(I)–M(V) fluorocomplexes AMF₆, A₂MF₇, A₃MF₈, AM₂F₁₁, AM₃F₁₆ and AM₄F₂₁, whose structures have been completely or partially determined, are reviewed here [where A = Li, Na, K, Rb, Cs, Cu, Ag, In, Tl; M = P, As, V, Rh, Ru, Au, Pt, Ir, Os, Re, Sb, Mo, W, Nb, Ta, Bi]. Even for AMF₆, there are some compounds whose structures are still unknown. The structures of some AMF₆ compounds are still based only on powder diffraction studies causing confusion and ambiguity and leaving a degree of uncertainty as to the structure of some of them. Single crystal determination is necessary to clarify the classification of their structures. This applies particularly to the A₂MF₇, A₃MF₈, AM₂F₁₁, AM₃F₁₆ and AM₄F₂₁ compounds in the AF-MF₅ systems and to the geometry of the corresponding $[M_nF_{5n+1}]^-$ (n = 2, 3, 4)anions, for which data are still limited. Here it is necessary to add that the effect of the cation-anion contacts on the structure of [Sb₂F₁₁]⁻ anion was extensively studied by Wilner and Aubke in the transition metal carbonyl chemistry [68-71].

Acknowledgement

One of the authors (ZM) gratefully acknowledges the Slovenian Research Agency (ARRS) for financial support of the present study within the research program: P1-0045 Inorganic Chemistry and Technology.

References

- R.D.W. Kemmit, D.R. Russel, D.W.A. Sharp, J. Chem. Soc. (1963) 4408– 4413.
- [2] D. Babel, Struct. Bond. 3 (1967) 1-87.
- [3] A.F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, 1986, pp. 457–458.
- [4] D. Babel, A. Tressaud, in: P. Hagenmuller (Ed.), Inorganic Solid Fluorides, Chemistry and Physics, Academic Press Inc., Orlando, 1985 pp. 105–106.
- [5] A. Agulyansky, The Chemistry of Tantalum and Niobium Fluoride Compounds, Elsevier, Amsterdam, 2004.
- [6] R.D. Shannon, Acta Cryst. A32 (1976) 751-767.
- [7] A.M. Heyns, C.W.F.T. Pistorius, P.W. Richter, L.B. Clark, Spectrochim. Acta A34 (1978) 279–286.

- [8] K. Kitashita, R. Hagiwara, Y. Ito, O. Tamada, J. Fluorine Chem. 101 (2001) 173–179.
- [9] A.M. Heyns, C.W.F.T. Pistorius, Spectrochim. Acta 31A (1975) 1293–1301.
- [10] A.M. Heyns, C.W.F.T. Pistorius, Spectrochim. Acta 32A (1976) 535– 545
- [11] C. Hebecker, Z. Anorg. Allg. Chem. 384 (1971) 12–18.
- [12] D. Bizot, H. Vestegaine, J. Inorg. Nucl. Chem., Suppl. (1976) 67-68.
- [13] S. Loss, C. Röhr, Z. Naturforsch. 53B (1998) 75–80.
- [14] D. Bizot, J. Fluorine Chem. 11 (1978) 497-507.
- [15] R.B. English, A.M. Heyns, J. Cryst. Spectrosc. Res. 14 (1984) 531-540.
- [16] C.D. Desjardins, J. Passmore, J. Fluorine Chem. 6 (1975) 379-388.
- [17] Z. Mazej, P. Benkič, J. Fluorine Chem. 126 (2005) 803-808.
- [18] C. Röhr, R. Kniep, Z. Naturforsch. 49B (1994) 650-654.
- [19] J.H. Kim, K. Nagahara, S. Yonezawa, M. Takashima, Chem. Lett. 33 (2004) 884–885.
- [20] O. Graudejus, S.H. Elder, G.M. Lucier, C. Shen, N. Bartlett, Inorg. Chem. 38 (1999) 2503–2509.
- [21] O. Graudejus, A.P. Wilkinson, L.C. Chacón, N. Bartlett, Inorg. Chem. 39 (2000) 2794–2800.
- [22] H. Fitz, B.G. Müller, N. Bartlett, Z. Anorg. Allg. Chem. 628 (2002) 133– 137
- [23] Ju.M. Kiselev, A.I. Popov, V.B. Sokolov, S.N. Spicin, Z. Neorg. Himii 34 (1989) 434–437.
- [24] J.H. Burns, Acta Cryst. 15 (1962) 1098-1101.
- [25] V. Wilhelm, R. Hoppe, J. Inorg. Nucl. Chem., Suppl. (1976) 113–117.
- [26] C. Hebecker, Z. Anorg. Allg. Chem. 376 (1970) 236-244.
- [27] O. Graudejus, A.P. Wilkinson, N. Bartlett, Inorg. Chem. 39 (2000) 1545– 1548
- [28] G. Teufer, Acta Cryst. 9 (1956) 539-540.
- [29] M.M. De V. Steyn, A.M. Heyns, R.B. English, J. Cryst. Spectrosc. Res. 14 (1984) 505–512.
- [30] R. Hagiwara, K. Kitashita, Y. Ito, O. Tamad, Solid State Sci. 2 (2000) 237– 241.
- [31] K. Matsumoto, R. Hagiwara, Y. Ito, O. Tamada, J. Fluorine Chem. 110 (2001) 117–122.
- [32] Z. Mazej, Eur. J. Inorg. Chem. (2005) 3983-3987.
- [33] H. Sowa, K. Knorr, F. Mädler, H. Ahsbahs, A. Kutoglu, Z. Kristallogr. 214 (1999) 542–546.
- [34] G.J. Kruger, C.W.F.T. Pistorius, A.M. Heyns, Acta Cryst. B32 (1976) 2916–2918.
- [35] H. Bode, H. Döhren, Acta Cryst. 11 (1958) 80-82.
- [36] G. Gafner, G.J. Kruger, Acta Cryst. B30 (1974) 250-251.
- [37] W. Casteel Jr., T. Horwitz, Eur. J. Solid State Inorg. Chem. 29 (1992) 649–657
- [38] N. Barteltt, K. Leary, Rev. Chim. Miner. 13 (1976) 82-97.
- [39] Z. Mazej, E. Goreshnik, Solid State Sci. 8 (2006) 671-677.
- [40] N. Bartlett, D.L. Lohman, J. Chem. Soc. (1964) 619-626.
- [41] M.A. Hepworth, K.H. Jack, G.J. Westland, J. Inorg. Nucl. Chem. 2 (1956) 79–87.
- [42] B.F. Hoskins, A. Linden, P.C. Mulvaney, T.A. O'Donnell, Inorg. Chim. Acta 88 (1984) 217–222.
- [43] Steyn, et al. J. Cryst. Spectrosc. Res. 14 (1984) 505-512.
- [44] D. Bizot, M. Malek-Zadeh, Rev. Chim. Miner. 11 (1974) 710-719.
- [45] Gmelins Hanbuch der anorganischen Chemie; Niob, Teil B4, Verlag Chemie, Weinheim, 1973, pp. 200–208.
- [46] R.E. Eberts, F.X. Pink, J. Inorg. Nucl. Chem. 30 (1968) 457-462.
- [47] Gmelins Hanbuch der anorganischen Chemie; Tantal, Teil B2, Verlag Chemie, Weinheim, 1971, pp. 208–281.
- [48] G.M. Brown, L.A. Walker, Acta Cryst. 20 (1966) 220-229.
- [49] C.C. Torardi, L.H. Brixner, G. Blasse, J. Solid State Chem. 67 (1987) 21– 25
- [50] J.L. Hoard, W.J. Martin, M.E. Smith, J.F. Whitney, J. Am. Chem. Soc. 61 (1939) 1252–1259.
- [51] A. Agulyansky, J. Fluorine Chem. 123 (2003) 155-161.
- [52] R.B. English, E.C. Reynhardt, J. Phys. C: Solid State Phys. 16 (1983) 829– 840
- [53] S.E. Eklund, J.Q. Chambers, G. Mamantov, J. Diminnie, C.E. Barnes, Inorg. Chem. 40 (2001) 715–722.

- [54] G.W. Drake, D.A. Dixon, J.A. Sheehy, J.A. Boatz, K.O. Christe, J. Am. Chem. Soc. 129 (1998) 8392–8400.
- [55] C.W. Balke, J. Am. Chem. Soc. 27 (1905) 1140-1157.
- [56] T.F. Antokhina, L.N. Ignat'eva, N.N. Savchenko, T.A. Kaidalova, Russ. J. Inorg. Chem. 49 (2004) 832–835.
- [57] J.L. Hoard, W.J. Martin, M.E. Smith, J.F. Whitney, J. Am. Chem. Soc. 76 (1954) 3820–3823.
- [58] G.B. Hargreaves, R.D. Peacock, J. Chem. Soc. (1958) 4390-4393.
- [59] G.B. Hargreaves, R.D. Peacock, J. Chem. Soc. (1958) 2170-2175.
- [60] J.E. Griffiths, A.J. Edwards, W.A. Sunder, W.E. Falconer, J. Fluorine Chem. 11 (1978) 119–142.
- [61] R.J. Gillespie, D. Martin, G.J. Schrobilgen, J. Chem. Soc. Dalton (1980) 1898–1903.

- [62] Z. Mazej, P. Benkič, Inorg. Chem. 42 (2003) 8337-8343.
- [63] P. Benkič, H.D.B. Jenkins, M. Ponikvar, Z. Mazej, Eur. J. Inorg. Chem. (2006) 1084–1092.
- [64] R.J. Gillespie, B. Landa, Inorg. Chem. 12 (1973) 1383-1388.
- [65] J.E. Griffiths, W.A. Sunder, W.E. Falconer, Spectrochim. Acta 31A (1975) 1207–1216.
- [66] H.D.B. Jenkins, I. Krossing, J. Passmore, I. Raabe, J. Fluorine Chem. 125 (2004) 1585–1592.
- [67] T. Drews, K. Seppelt, Angew. Chem. Int. Ed. 36 (1997) 273-274.
- [68] H. Wilner, F. Aubke, Chem. Eur. J. (2003) 1669-1676.
- [69] H. Wilner, F. Aubke, Organometallics 22 (2003) 3612-3633.
- [70] H. Wilner, F. Aubke, Inorg. Chem. Highlights 1 (2002) 195-212.
- [71] H. Wilner, F. Aubke, Angew. Chem. Int. Ed. 36 (1997) 2403-2425.